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Abstract - In this paper small signal modeling of series-
parallel resonant converters based on extended describing 
function is presented. Resonant equivalent circuit state variables 
are approximated by their fundamental harmonics. By using 
extended describing function method and with separation of state 
variables, state space model of resonant converter is obtained. 
Small-signal model is analyzed in two main operation modes, 
when switching frequency is bellow and above frequency of 
resonant tank. Movement of zeros and poles of small signal model 
is presented in respect operation mode and ratio between 
switching and resonant frequency.   

Keywords – Resonant converter, LLC converter, extended 
describing function, small-signal model. 

 
I. INTRODUCTION 

 
The resonant converters have advantages for high 

power or high-frequency power conversion. [1] Series or 
parallel resonant converters suffer from several drawbacks 
that limit its usefulness in many applications. Series 
resonant converters have small variation of dc conversion 
ratio over large range of switching frequency and are 
incapable of regulating output voltage when unloaded. In 
some applications, at light loads, the resonant current is 
reduced to a point where zero-voltage switching (ZVS) is 
lost. 

These drawbacks are avoided with development of 
parallel, series-parallel, and many other higher-order 
resonant topologies [2]. The LLC series resonant converter 
(LLC- Series-parallel converter fig. 1) modifies the gain 
characteristics of a series resonant converter (SRC) and 
improves the light-load efficiency allowing boost mode 
operation.  

Analysis methodologies that have been developed for 
modeling small-signal dynamics of power converters can 
be classified into two main categories. Averaging technique 
starts from state space description of each topology. It 
applies small ripple approximation and average time-
invariant model is derived.  After linearization and 
neglecting higher order terms, s domain transfer functions 
are obtained. State space average method has been used for 
converters with PWM regulation to analyze small signal 

dynamics, and provides accurate method for up to half 
switching frequency. The resonant converter switching 
frequency is close to resonant tank natural frequency, so 
states contains mainly switching frequency harmonics 
instead of low frequency content like in PWM converter. 
Since average method will eliminate the information of 
switching frequency, it cannot predict the dynamic 
performance of resonant converter.  

For discrete modeling technique, state space system is 
also starting point. Equations are formed from equivalent 
circuit difference equations. However this method 
introduces error by approximation of transition in linear 
terms during one switching period.  

The describing function concept has been introduced in 
[3]. The control-to-output and line-to-output describing 
functions are defined under the constant line voltage and 
constant control signal, respectively. Output control voltage 
is expressed as a Fourier series expansion. The resulting 
converter output voltage component at the same frequency 
as that of the perturbation signal is found by calculating the 
amplitude and phase of the fundamental term in the Fourier 
series. Extended describing function method proposed in 
[4] is a simplified modeling method based on description 
function method presented in [5]. Accuracy of this method 
has been verified in [6] based on analysis of series and 
parallel resonant converter. Detail small-signal 
characteristic of resonant LLC converter has been 
presented in [7] using simulation tool to emulate function 
of impedance analyzer to get the small signal response of 
resonant converter.  

In Section II equivalent circuit of LLC converter is 
presented and extended describing function method is 
introduced. State space model is obtained with isolation of 
equation variables. Small-signal model characteristics of 
converter are presented in Section III. For a range of 
switching frequency two main modes have been identified 
and movement of zeros and poles presented. Section IV 
states the conclusions. 

 
II. SMALL SIGNAL MODELING  

 
      The circuit diagram of an LCC resonant converter is 
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Fig. 1:  Circuit diagram of an LCC resonant converter. 

 
 
A. Nonlinear State Equation 
 

The input voltage gV  is assumed to be symmetric 
square wave, with its magnitude proportional to the DC 
input voltage. The equivalent circuit provides the following 
nonlinear state space equations, where

rLi , 
MLi and 

rCv  are 

the state variables and OV is the output variable: 

 
Fig. 2:  Equivalent circuit diagram of LLC resonant converter 
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In this implementation of resonant converter, the output 
voltage is regulated by modulating the switching frequency 
where the operating point is determined by },,{ Osg Rv ω . 

 
B. Harmonic Approximation 

 
According to [8] typical waveforms of the variables 

shown in Fig.2 can be approximated by fundamental 
harmonics, and the output capacitor voltage can be 
approximated by its dc component. Referring to [7], when 
converter is operating in continuous conduction mode with 
higher order of harmonics took into consideration the 
model will not be improved significantly, which is 
understandable since in continuous conduction mode LLC 
is operating like SRC. When converter is operating in 
discontinuous conduction mode observing fundamental 
component is not enough. With more harmonics 
considered, the model will be different especially in 
frequencies near double beat pole [7]. 

By making this assumption, we have: 
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where terms },,,,,{
rCrSMCMSrCrS CCLLLL vviiii  are slowly time 

varying components. 
 

C. Extended Describing Function 
 

By using the extended describing function method [6], 
the nonlinear terms in (1-3) can be approximated either by 
the fundamental components terms or by the DC terms to 
give: 
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With the small-signal modulation frequency lower than 
the switching frequency, by substituting (4-10) into (l-3), 
and by equating the coefficients of dc, sine, and cosine 
terms respectively, we get: 
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Equation (11-18) represents modulation equation, a 
nonlinear large-signal model of the LLC power stage. 
Inputs of (11-18) },,,{ psg idv ω  are varying slower than the 
switching frequency and by substituting (13) into (11) we 



get: 
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For the small signal model to be presented in state 
space form, each state variable needs to be isolated in the 
equation and represented as the sum of the remaining 
variables. Since a ratio between state variables exists in 
(19) pL ii

rS
/ where 22 )()(

MCrCMSrS LLLLp iiiii −+−=  it is clear 

that this relationship of the state variables cannot be put 
into the states vector, therefore the ratio pL ii

rS
/  is put into 

small signal form with the use of Taylor Series expansion. 
After expanding pi , perturbing the large-signal model 

around the operating point 
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linearization around operating point and, model can be 
represented in state-space form as follows:  
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III. SMALL SIGNAL CHARACTERISTIC OF LLC 

RESONANT CONVERTER 
 
Small signal characteristic of LLC converter (fig. 1.) is 

analyzed based on previous model. The simulation is 
performed for different operation modes in switching 
frequency range of 68-110 kHz. With use of extended 
describing function method, when converter is operating in 
continuous conduction mode, for 1≤F , where F is ratio 
between resonant and switching frequency, small signal 
characteristic is shown in figure 3. The graph contains one 
beat frequency double pole, one pole and one ESR left half 
plane zero. While operating near resonant frequency, beat 
frequency double pole will move to lower frequency. When 
switching frequency at resonant frequency the beat 
frequency double pole will split and become two real poles, 
figure 4.  Moving to higher switching frequency will cause 

a double pole at lower frequency. Output capacitor ESR 
will cause a fixed frequency left half plane zero.  

 
Fig. 3:  Movement of poles and zeros for 1≤F  in CCM. 

 
Fig. 4:  Movement of poles and zeros for 1≈F  in CCM.  

When converter is operating in discontinuous mode, 
for 1≤F , small signal characteristic is shown in figure 5. 
In cases where switching frequency is lower than resonant 
frequency a right plane zero observable. In this case 
position of RHP zero is frequency dependent, but it doesn’t 
shift to very low frequency even with F=0.8 or F=0.7.  

 
Fig. 5:  Movement of poles and zeros for 1≤F  in DCM. 



 
Fig. 5:  Bode plot of control-to-output for CCM and 1≥F .  

 
Fig. 6:  Bode plot of control-to-output for DCM and 1≤F . 

In left half plane, referring to figure 5, there are two 
poles and one ESR zero. Compared to previous mode, 
poles they are less frequency dependent. Control to output 
transfer functions in different operation modes, CCM and 
DCM are presented in figure 5 and 6, respectively.    

 
 

IV. CONCLUSION 
 
In this paper a technique based on the extended-

describing function was employed on modeling dynamics 
of LLC resonant converter. Resonant equivalent circuit 
state variables are approximated by their fundamental 
harmonics. To represent small signal model in state space 
form a separation of variables is performed with use of 
Taylor Series expansion. Movement of zeros and poles of 

small signal model is presented in respect operation mode 
and ratio between switching and resonant frequency. When 
resonant converter is operating in continuous conduction 
mode, the beat frequency double will move according to 
switching frequency and eventually split when switching 
and resonant frequency are equal. When resonant converter 
is operating in discontinuous conduction mode, all poles 
are less frequency dependent. Position of RHP zero is 
limited to high frequency and doesn’t need special 
addressing in compensation design. 
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